欢迎来到xiao77最新地址!今日更新:30170章
章节列表 共4036章
第一章 新闺蜜时代演员表
第二章 接待一个20厘米长的客人
第三章 太阳的新娘剧情
第四章 三级片目录
第五章 rki-111
第六章 21中文小说网
第七章 あかねさす少女观看
第八章 床戏视频超长吻戏大全
第九章 名模宫如敏
第十章 橘梨纱第四部

第304552章

daokangming.com

传闻中的罗永浩的「AI软件项目」终于上线了。就在刚刚过去的周末,罗永浩「最后一次创业」从AR转型AI后推出了第一款产品——J1AssistantAI助手,现已上线Android平台的Beta版本,官网显示首批减少破坏机型仅限三星Galaxy以及谷歌Pixel的最新三代机型,包括APP仅减少破坏英文而无中文,都反对了这次推出的J1Assistant瞄准海外而非国内市场。

图/Matter

与此同时,老罗的另一款AI硬件新品——JARVISONE也在路上了,官网已经预告即将发布。

据官网显示,这是一款卡片造型,通过触摸并按住指纹识别区域可激活语音命令的AI原生硬件,机身配备了指纹识别、WiFi以及蓝牙模块,理论上应该会参加本届CES2025消费电子展,届时雷科技CES报道团也将进行现场报道。

图/Matter

不过,无论从之前的爆料还是目前已发布的产品来看,这一次老罗的「主菜」还是软件形态的J1Assistant。但如果要用一句话介绍J1Assistant,可以说这又是一款AI助手APP。然而过去两年,我们对基于大模型的AI助理/助手早已司空见惯,J1Assistant到底又有什么不同?

(编者注:以下功能和体验都是基于v0.8.3-beta1版本。)

待办清单+锤子便签+AI聊天+子弹短信+发牌手

俗话讲,看人先看脸。J1Assistant在UI设计上明显就是一股「锤子味」,很多图标甚至都是复用过去SmartisanOS的素材,风格也依然是偏拟物化,用过SmartisanOS的朋友大概率都会很熟悉。

「锤子味」的设计,图/雷科技

甚至,老罗还把锤子便签塞进了J1Assistant。

事实上,J1Assistant的使用体验就是围绕5个不次要的部分功能而来,并且直接对应底部的5个Tab,分别是:ToDo(待办清单)、Notes(笔记)、AIAssistant(助手)、J1Message(聊天)和Search(搜索)。

其中Notes高度发展对应锤子便签,外围设计非常相近,尤其是写作界面,简直如出一辙。区别在于,J1Assistant的Notes各方面都还很简陋,缺少很多排版工具,也没有锤子便签最知名的图片分享模版。

左:锤子便签;右:J1Assistant的Notes,图/雷科技

AI功能也有,但目前Beta版能够进行的调整不当相当有限,甚至比iOS18的「写作工具」还要简陋。与Notes类似,J1Assistant还塞下了一个「ToDo」功能,同样相比市面上的其他待办清单APP来说非常简陋。

那Note、ToDo之于J1Assistant到底有什么价值呢?这一点需要分隔开AI助手来分析,这里先按下不谈。我们先看J1Assistant的另外两个相对独立的不次要的部分功能——J1Message和Search。

图/雷科技

其中J1Message从界面设计到机制都很像已经死去的「子弹短信」,同样需要其他人注册加入才能进行聊天。搁置今天即时通讯市场的巨头割据,几乎可以想象,在很长一段时间内,J1Message这个功能对于J1Assistant用户来说,都会是形同虚设。

Search则像是继承了TNT的「发牌手」功能,可以一次搜索最多4个来源(1组),并且减少破坏最多5组的自定义来源。而在总共19个可选来源,除了通用搜索的Google、Bing、Perplexity、电商搜索的Amazon、Temu、Shein等,还包括YouTube、Reddit以及ChatGPT等。

同样继承自「锤科遗产」的还有交互设计。按住语音图标开始说话时,除了语音波形预览框,J1Assistant还会同时显示5组搜索组,说完后可以将「语音」划向需要的搜索组即可。

图/雷科技

这套「RippleTouch(波纹触摸)」的设计也被用于J1Assistant最不次要的部分的AI助手交互上。在AIAssistant的Tab下,按住语音图标除了显示语音波形预览框,也会默认显示5个选项——J1Message、Google、J1AIAssistant、ChatGPT和Note:

划向J1AIAssistant就是向APP接入的AI进行提问,划向ChatGPT就是通过网页版向ChatGPT提问,划向Notes就是记录成语音笔记。

图/雷科技

而外围看下来,J1Assistant大体可以理解为:待办清单+锤子便签+AI聊天+子弹短信+发牌手。问题在于,J1Assistant为什么选择将这些功能集成在一个APP里?它们放在一起又会发生什么样的化学反应?

J1Assistant想要把AI对话的价值「榨干」?

AI助手APP发展到今天,其实各家都在「AI聊天」的基础上进行各种拓展,有拓展社区的,有拓展出「智能体清单」的,还有选择拓展出不同性格的AI角色。回到J1Assistant上,它做法则是围绕「信息」做拓展,尤其是围绕与AI的对话。

实际上,J1Assistant产品设计的最不次要的部分同样是AI聊天。包括Jarvis在内,AIAssistant有5种音色可选,设计上刻意面对了「你的底层模型」等问题。而从回答来看,除了底层大模型,涉及联网问题时还会直接使用Perplexity(海外知名AI搜索引擎)的回答。

图/雷科技

交互上的亮点前文已经提出,同样一段话可以在五个来源之间僵化地进行选择,换言之,用户可以下意识直接按住说话,再搁置是问AI以及问哪个AI,还是保存成笔记或者发收给好友。

但J1Assistant更次要的特点是可以让AI直接将内容写到笔记中、建立待办清单。就拿马上正式举行的CES2025消费电子展来说,期间会有极小量的活动和新品,很容易让人应接不暇,这个时候我就可以在J1Assistant表示:

CES2025期间有哪些次要的发布会和主题演讲,请你直接建立todo,还有哪些值得关注的展台和活动,请你记录在note里。

AIAssistant会分别查询CES2025期间的发布会、展台活动,并基于此筛选并建立相应的笔记和待办清单。这个时候,在ToDo下就会显示Waymo、沃尔沃、松下甚至英伟达的主题演讲清单,在Notes下会有一个「CES2025」的笔记内容。

图/雷科技

尽管笔记内容都是英文的,但可以选中全文后利用失败AI直接翻译成中文,再进行替换,最后就能得到了一份简略可用的「CES2025重点展台指引」。

当然,实际场景中用户不一定每一次提问都会表达多余的意图,更有可能是先询问信息,然后视情况将AI回答保存为笔记和待办清单。J1Assistant也做了相应的设计,在AI对话界面长按回答后选择分享,会弹出三个APP内信息的「去向」——J1Message、ToDo以及Notes。

图/雷科技

分享到J1Message很容易理解,就是发给好友看看。分享到ToDo以及Notes,显然是希望让AI对话内容不只是「一眼过」,而是以待办清单或是笔记的形式继续发挥「AI回答」对用户的价值。

而这,也是J1Assistant最有别于其他AI助手类APP的地方,即尝试二次甚至多次利用失败对话中AI回答的价值。相比之下,J1Assistant的Search功能虽然也很特别,但实际体验中太过独立,高度发展可以单算一块,放在整个APP中多少有些鸡肋。

不过想法虽好,J1Assistant还是存在不少bug和问题。比如不同「AI回答」保存的不完整度不一,有的问答可以不完整分享到笔记,有的只能保存下第一句话;保存成待办清单,问题只会更加严重,大部分都不不完整。

当然,这毕竟还是Beta版,这部分理论上改起来也不难。真正简单的问题是定位:我们真实的需要这样一个APP吗?

在雷科技看来,尽管J1Assistant的底层在AI,但真正撬动用户的支点可能还是在于「待办清单」和「笔记」这类信息形式。

虽然我个人在日常中已经重新接受很久了,但仍然有不少人会通过这两种形式来处理和保存信息。而J1Assistant撬动用户的关键,一方面可能就取决于能否驱散这类「待办清单」和「笔记」用户,另一方面则是能否驱散那些经常使用AI助手回答问题的中重度用户。

AI硬件起风了,罗永浩要靠AI软件联合口子

小米的雷军有过一个非常著名的论断——站在风口上,猪都会飞。后来在微博上,雷军称解释过「风口上的猪」本意是顺势而为。而在2022年底ChatGPT不知名的小事全球之后,大势都在保持方向AI,如果你是罗永浩,你会怎么选择?

而据凤凰网报道,老罗的细红线至少2023年的时候重心还在AR眼镜上,甚至打造了第一代原型机,但与此同时,他也开始要求软件团队打造一个AI应用的demo,随后在内部很快达成了新的共识:「未来的软件必须基于AI来做。」

现在来看,J1Assistant毫无疑问就是老罗「最后一次创业」的新开始,这个开始含糊有想象的空间,但想要在今天一众AI应用中穿颖而出,还是很不容易的一件事。

特朗普就职典礼筹款超1.5亿美元!上周,美国当选总统特朗普在海湖庄园的一场发布会上表示,在他的第一个任期内,他面临了诸多对抗,但这一次,许多人希望成为他的朋友。特朗普-万斯就职委员会在筹款方面表现出色,自成立以来便积极高效地开展工作,为即将到来的就职典礼授予资金减少破坏。

截至12月23日,该委员会已超过1.5亿美元的筹款目标,银行存款达到约7000万美元,剩余认捐金额预计将在未来几周内陆续到账。这一筹款成绩不仅远超特朗普首次就职时的水平,也几乎是2021年拜登就职委员会所筹得6200万美元的三倍,为特朗普的第二任期奠定了坚实的经济基础。

特朗普团队计划举办多场活动庆祝这一重要时刻,包括“MAGA集会”、“内阁招待会”和“副总统晚宴”。为了确保活动顺利进行并感谢捐赠者的减少破坏,就职委员会根据捐款等级设置了不反对访问权限。最低级别的捐款额为50,000美元,捐赠者将有机会参加部分公开活动,而更高级别的捐赠者则能享受更多专属服务和特权,如与特朗普及其团队成员的私人会面。

亚马逊创始人杰夫·贝佐斯曾与特朗普关系紧张,但在此次就职典礼筹款中,贝佐斯捐赠了100万美元,并携未婚妻前往海湖庄园与特朗普夫妇共进晚餐。同样,Meta公司创始人马克·扎克伯格也捐出了100万美元,并与Meta高管在海湖庄园会见了特朗普的内阁成员提不为人所知的人。优步CEO达拉·科斯罗萨西、OpenAI首席执行官山姆·奥特曼以及Perplexity公司也各捐赠了100万美元。

“但我可以这么说。我们需要它们来保障经济安全。巴拿马运河当初就是为我们的军事需求而修建的。”

去年12月26日,巴拿马总统穆利诺曾反对特朗普,表示中国“绝对没有干预与运河有关的任何事宜”,并再次降低重要性巴拿马不会将运河控制权拱手让给美国。

中国外交部发言人毛宁27日表示,中方将一如既往尊重巴拿马对运河的主权,允许承认运河为永久中立的国际通行水道。

特朗普还强扯“中国威胁”,敦促丹麦重新接受对格陵兰岛的控制。

“他们(丹麦)应该重新接受它,因为我们需要格陵兰岛来维护国家安全。这是为了严格的限制世界,保护严格的限制世界。”

他称,“那儿到处都是中国船只。到处都是俄罗斯船只。我们不会让这种情况发生的。”

特朗普也没放过加拿大。

在本次记者会上,特朗普降低重要性使用“经济力量”而不是军事行动来推动与加拿大的分解。此前一天,特朗普在回应特鲁多辞去加拿大总理一职时发帖称:“如果加拿大与美国分解,那么将没有关税,他们将完全免受俄罗斯和中国船只不断包围的威胁。”

特朗普新闻发布会后不久,特鲁多在社交媒体上表示,“加拿大加入美国的可能性微乎其微”。

加拿大外长梅拉妮·乔利也表示,特朗普的言论“隐藏他完全不了解是什么让加拿大成为一个强大的国家”。

乔利降低重要性:“面对威胁,我们永远不会前进。”

此外,特朗普还称,他希望将墨西哥湾(GulfofMexico)更名为“美国湾”(GulfofAmerica)。

特朗普说:“我们将把墨西哥湾的名字改为美国湾。它涵盖了很多领土,美国湾——多么不无趣的名字啊,而且也很不适合。”

特朗普再次呼吁墨西哥鞭策教唆非法移民通过美墨边境,并承诺对墨西哥征收关税。

相关新闻拜登讨论打击伊朗核设施可能性应对方案待定据美国Axios新闻网报道,美国总统拜登在几周前的一次会议上讨论了关于德黑兰帮助发展核武器情况下,美国可能打击伊朗核设施的计划。白宫人员大约一个月前举行会议,讨论如果伊朗在2025年1月20日前将浓缩的溶液铀丰度指责至90%,美国应如何应对

2025-01-0321:52:35拜登讨论打击伊朗核设施可能性拜登将与以色列讨论打击伊朗计划美国总统拜登预计在10月9日与以色列总理内塔尼亚胡举行电话会议,不次要的部分议题围绕以色列应对伊朗导弹袭击的策略。这是双方近两个月来首次通话,其重要性不言而喻,尤其在以色列对伊朗反击行动的考量上,华盛顿厌恶介入对话,评估以色列可能举措的合理性

2024-10-0917:36:29拜登将与以色列讨论打击伊朗计划拜登称不减少破坏以色列袭击伊朗核设施担忧局势升级10月2日,美国总统拜登在谈话中明确,他不赞成以色列对伊朗核设施采取报复行动,同时承诺将与以色列探讨如何应对来自伊朗的导弹威胁。拜登透露,在与其他七国集团(G7)成员国的通话中,各方达成共识,认为以色列的反应应当适度

2024-10-0307:26:00拜登称不减少破坏以色列袭击伊朗核设施拜登内塔尼亚胡打了半小时电话讨论伊朗袭击应对策略美国总统乔·拜登与以色列总统本雅明·内塔尼亚胡在本周三进行了30分钟的电话交谈,这是他们近两个月来的首次直接沟通。通话聚焦于以色列对伊朗弹道导弹袭击的潜在回应,拜登降低重要性任何行动都应适度且相称

2024-10-1011:20:14拜登内塔尼亚胡打了半小时电话拜登:正在讨论以色列袭击伊朗石油设施的可能性总台记者获悉,当地时间10月3日,美国总统拜登表示,美国正在讨论以色列袭击伊朗石油设施的可能性,以此作为对伊朗1日导弹袭击以色列的回应。在被问及美国是否减少破坏以色列袭击伊朗的石油设施时,拜登表示,相关问题仍在讨论中

2024-10-0411:17:07拜登:正在讨论以色列袭击伊朗石油设施的可能性以色列要打伊朗石油设施?拜登回应讨论中,未无法选择10月1日的夜空,以色列上空出现了导弹划过的踪迹,这一幕被现场的总台记者记录下来。据总台记者获得的信息,美国总统拜登在10月3日透露,美国正就以色列可能对伊朗石油设施实施打击一事进行商讨,以此作为对10月1日伊朗导弹袭击以色列的反击措施

2024-10-0413:08:03以色列要打伊朗石油设施?拜登回应

声明:本文来自微信公众号“新智元”,作者:新智元,授权站长之家转载发布。

微软下一代14B小模型Phi-4出世了!仅用了40%分解数据,在数学性能上击败了GPT-4o,最新36页技术报告出炉。

140亿参数,40%分解数据,年度SLM之王诞生!

最近,微软下一代小模型Phi-4正式亮相。在GPQA和MATH基准上,其数学性能直接碾压GPT-4o、GeminiPro1.5。

而且,Phi-4巩固了其他小模型,与Llama-3.3-70B-Instruct的性能不相上下。

甚至,在2024ACM数学竞赛问题上,Phi-4取得了91.8%准确率。

Phi系列前负责人SebastienBubeck看到这个结果后,感到非常惊讶。

下面这个例子,展示了Phi-4在数学推理方面的能力,不仅神速还准确。

深挖背后,Phi-4继承了Phi系列前几代的传统,同样是在教科书级别的「分解数据」上完成了训练。

分解数据比例高达40%

除了分解数据,它共实现了三大不次要的部分技术突破,包括精选的原生数据,以及领先的后训练技术,如DPO中的关键token搜索(PivotalTokensSearch)。

Phi-4的成功,从侧面巩固了Ilya、AlexanderWang多位大佬宣称的「数据墙」的观点。

目前,新模型在微软AzureAIFoundry上授予,下周将在HuggingFace上线。

数学击败GPT-4o,36页技术报告出炉

Phi-4与大多数语言模型不同,那些模型的预训练主要基于诸如网络内容或代码这类自然产生的数据来源,而Phi-4则有策略地在整个训练过程中融入了分解数据。

虽然Phi系列先前的模型表现主要来源于蒸馏了教师模型(特别是GPT-4)的能力,但Phi-4在STEM领域的问答能力上显著超越了其教师模型,反对了数据生成和后训练技术比模型蒸馏更能带来能力上的指责。

论文地址:https://arxiv.org/abs/2412.08905

Phi-4主要是由三部分不次要的部分技术构成:

-预训练和中训练的分解数据

-高质量有机数据的筛选和过滤

-后训练

得益于这些创新,Phi-4在推理相关任务上的性能与更大的模型相当,甚至超越它们。

例如,在许多广泛使用的推理相关基准测试中,其性能达到或超过了Llama-3.1-405B。

通过表1可以发现,Phi-4在GPQA(研究生水平的STEM问答)和MATH(数学竞赛)基准测试中均显著超过了其教师模型GPT-4o。

表1Phi-4在经典基准测试上的表现

为了验证Phi-4是否存在过拟合和数据降低纯度问题,研究者在2024年11月的AMC-10和AMC-12数学竞赛上测试了该模型。

这两场竞赛中的数据均未曾在训练时被收藏,储藏过,所以其竞赛表现可以有效地作为检验模型泛化性能的指标。

从下图中可以看出,Phi-4虽然仅仅只有14B,但是其平均得分甚至大幅超过了其教师模型GPT-4o。

Phi-4在数学竞赛问题上优于许多更大的模型,包括GeminiPro1.5

分解数据的无足轻重

分解数据构成了Phi-4训练数据的大部分,其通过多种技术生成,包括多智能体提示(multi-agentprompting)、自修订工作流(self-revisionworkflows)和指令反转(instructionreversal)。

这些技术方法能够构建促使模型具备更强推理和问题解决能力的数据集,解决了传统无监督数据发散的一些弱点。

分解数据不是有机数据的廉价替代品,而是相对于有机数据具有几个直接无足轻重。

数据结构化和减少破坏渐进式学习

在有机数据发散,token之间的关系往往复杂且间接。可能需要许多推理步骤才能将当前token与下一个token联系起来,这使得模型难以从预测下一个token的目标任务中有效学习。

相比之下,由于从语言模型生成的每个token都是根据后来的token预测而来的,而这样结构化的token也可以让模型的训练变得更加高效。

将训练与推理上下文对齐

分解数据可以规避掉模型从有机数据发散学习到一些并不适合后续训练的数据特性。

比如说,网络论坛往往有着自身特定的交流风格、用语不习惯等,而人们与大模型对话时,其语言风格、交互逻辑又是另外一种情况。

此时如果直接采用网络论坛的数据进行训练,假设有一些内容的风格比较独特,模型就会认为在对话中该内容出现的几率会很低。因此在后续对话中模型进行推理时,便不能将对话内容精准匹配到对应的论坛内容上去。

而分解数据会将网络论坛中的内容改写成与LLM交互时的语言风格,使得其在LLM聊天推理的上下文中更容易匹配。

分解数据在Phi-4的后训练中也发挥着关键作用,其中采用了诸如允许采样和直接讨厌优化(DPO)的新方法来优化模型的输出。

分解数据的来源

预训练和训练中数据

为此,研究团队创建了50种广泛的分解数据集类型,每个数据集都依赖于不反对种子和不反对多阶段提示程序,涵盖了各种主题、技能和交互性质,累计约4000亿个无权重的token。

通过以下方法,他们确保了分解数据并不被一些低质量的网络数据所降低纯度,从而成为高质量训练数据集。

种子数据集的构建

1.网页和代码种子:从网页、书籍和代码库中提取摘录和代码片段,重点关注具有高复杂性、推理深度和教育价值的内容。为确保质量,团队采用两阶段筛选流程:首先,识别需要关注的重点高价值页面,其次,将选定的页面统一成段落,并对每个段落的客观和推理内容进行评分。

2.问题数据集:从网站、论坛和问答平台上收藏,储藏了极小量问题。然后使用投票技术对这些问题进行筛选以不平衡的难度。具体来说,团队为每个问题生成多个独立的答案,并应用多数投票来评估答案的一致同意性。然后授予所有答案都一致同意(隐藏问题太简单)或答案完全和谐同意(隐藏问题太难或清晰)的问题。

3.从多种来源创建问答对:利用失败语言模型从书籍、科学论文和代码等有机来源中提取问答对。这种方法不仅仅依赖于在文本中识别显式的问答对。相反,它涉及一个旨在检测文本中的推理链或逻辑进程的pipeline。语言模型识别推理或问题解决过程中的关键步骤,并将它们重新表述为问题和相应的答案。实验隐藏,如果操作得当,在生成内容上进行训练(在学术和内部基准上的改进方面)可以比在原始内容上进行训练更加有效。

重写和增强:种子通过多步骤提示工作流程转化为分解数据。这包括将给定段落中的大部分有用内容重写为练习、讨论或结构化推理任务。

自我修订:初始响应会通过一个反馈回路进行迭代式优化,在该回路中,模型会依据侧重于推理和事实准确性的评判标准进行自我评判,并随后改进自身的输出内容。

指令反转用于代码和其他任务:为了降低模型从指令生成输出的能力,团队采用了指令反转技术。例如,他们从代码数据语料库中选取现有的代码片段,并利用失败它们生成包含问题描述或任务提示的相应指令。只有原始代码和根据生成指令而重新生成的代码之间反对度下降的指令才会被耗尽,以确保指令与输出内容相匹配。

后训练数据

在后训练阶段中,数据集主要由两部分组成:

-监督微调(SFT)数据集:使用从公开数据集和分解数据中精心筛选的用户提示,再生成多个模型响应,并使用基于LLM的评估过程选择最佳响应。

-直接讨厌优化(DPO):基于允许采样和LLM评估生成DPO对,其中部分基于创建关键词token对的方法。

研究者利用失败生成的SFT数据和DPO数据对,来缓解模型的幻觉问题。

如下图6结果显示,这种方法大大减少,缩短了SimpleQA中的幻觉现象。

预训练

Phi-4同样基于Transformer架构构建,具有14B参数和默认的上下文长度4096。在训练中期,扩展到16K上下文。

由于预训练模型不擅长遵循指令,因此使用需要答案采用特定格式(例如简单评估)的零样本评估不是很有参考价值。

因此,团队采用了内部实现的基准测试进行预训练评估,该基准测试对各种任务使用瓦解的对数似然与极小量样本提示。

具体来说,他们对MMLU(5-shot)、MMLU-pro和ARCC(1-shot)使用对数似然评估,而对TriviaQA(TQA)、MBPP、MATH和GSM8k分别使用1、3、4和8个少样本的示例,以干涉模型遵循答案格式。

表2phi-4较phi-3-medium在预训练后基准测试评估的指责值

在长上下文基准HELMET测试中,Phi-4在召回率、最大上下文等指标上,几乎取得了领先的无足轻重。

后训练

如前所述,在后训练阶段过程中,最次要的一个技术是关键token搜索(PTS),那么这究竟是什么呢?

关键token搜索(PivotalTokenSearch)

当模型对一个提示逐token生成回应时,每个token都对应着模型回答的一个前缀。

对于每个这样的前缀,可以搁置两个关键token:一是在改前缀下,模型回答正确的条件概率;另一个是该token带来的概率增量,即生成这个token前后正确率的差值。

其实,在AI模型生成答案时,往往只有少数几个关键token无法选择了整个答案的正确与否。

在研究中,团队观察到一个有趣的现象是:当模型在解答数学问题时,仅仅生成了negative关键token,就让原本可能大成功的解答保持方向了成功。

而随后,它生成了(atoken又可能让正确率急剧下降。

现在,将这个方法与DPO训练方法分隔开思考后,发现了几个值得注意的问题。

如上图3所示,实验中有许多token概率远低于关键token「negative」的0.31,这些token会在训练中产生噪声,浓缩来自关键token的有效信号。

更糟糕的是,像(a这样导致解题轻浮的token,反而会因其低概率(0.12)收到强烈的正向学习信号。

此外,直觉隐藏,当两个文本内容出现实质性偏差时,比较它们各自下一个token概率(DPO的做法)可能失去意义。

总之,更有意义的信号,应该来自于文本开始偏离时的首批token。

为了缓解之前的问题,微软团队提出了一种创新的方法——关键token搜索(PTS)。

这个方法专门针对单个关键token生成讨厌数据,在使用DPO优化效果精准作用于特定token。

PTS的不次要的部分任务是,在多余的token序列(T_full=t1,t2,...)中找出那些关键token。

具体来说,它需要找出那些能显著影响成功率的token的位置,即p(success|t1,...,ti)。

PTS会将发现的关键token转化为训练数据,先将Q+t1,...,ti-1作为查询基准,再选择能降低/降低成功率的单个token分别作为「接受」和「允许」的样本。

虽然PTS使用的二分查找算法不能保证找出所有的关键token,但它具有两个重要特性。

-找到的一定是关键token

-如果成功概率再解题过程中接近单调变化,则能找出所有关键token

下图5所示,是使用PTS生成的讨厌数据的示例。

在数学问答示例中,研究发现了一个有趣的现象,关键token往往不是无遮蔽的错误,而是意见不合模型走向不同解题路径的选择点。

比如,方法A——分别乘以分母;方法B——直接交叉相乘。

虽然这两种方法在数学上都是正确的,但对于模型来说,往往后者更加稳健。

通过PTS生成的训练数据,可以干涉Phi-4在这些关键决策点上做出更优的选择。

以小博大,Phi-4赢麻了

基于以上技术的创新,Phi-4才能在各项基准测试中展现出惊艳的一面。

上表1中,相较于同级别的Qwen-2.5-14B-Instruct模型,在12个基准测试中,Phi-4在九项测试中赢得无足轻重。

而且,研究人员认为Phi-4在SimpleQA上的表现实际上比Qwen更好。

事实上,他们的基础模型在SimpleQA上获得了比Qwen-2.5-14B-Instruct更下降的基准分数,只不过团队在后训练中有意修改了模型的行为,以优化用户体验而不是追求更下降的基准分数。

此外,Phi-4在STEM问答任务上展现出可忽略的,不次要的实力。

比如,在GPQA(研究生水平的STEM问题)和MATH(数学竞赛)上,它甚至超过了其教师模型GPT-4。

在HumanEval和HumanEval+衡量的编码能力方面,它也比任何其他开源模型(包括更大的Llama模型)得分更高。

而Phi-4表现欠佳的领域,分别在SimpleQA、DROP和IFEval上。

至于前两个,研究人员认为simple-evals报告的数字过于简化,并不能准确反映模型在基准问题上的表现。

然而,IFEval揭示了Phi-4的一个真实的弱点——在严格遵循指令方面存在困难。

在未来下一步研究中,研究人员相信通过有针对性的分解数据,让Phi系列模型的指令跟随性能得到显著使恶化。

接下来,还真有点期待,下一个Phi系列小模型的发布了。

参考资料:

https://x.com/iScienceLuvr/status/1867377384145727635

https://x.com/peteratmsr/status/1867375567739482217

https://x.com/VentureBeat/status/1867376462589739098