投影仪行业老大,也扛不住了。
继2023年业绩下降超75%之后,极米科技2024年上半年业绩继续下降96%,归母净利润仅为367.31万元,扣非净利润直接下降126%至-1526.83万元。
投影仪,含糊不好卖了。2023年,投影仪出货量473.6万台,较上年少卖了30万台以上,行业销售额147.7亿元,缩水了四分之一。
经济形势导致的需求承压,投影仪路线之争导致的口水战,周期性的产品去库存,都不足以解释。
最根本的原因,还是同质化竞争下的极致内卷,直接将产业拖入了低端化的通道。2022年中国投影仪平均售价3932元左右,2023年下降至3119元左右。
为了突破瓶颈期,以极米科技为首的投影仪小巨头们,对内创新、对外出海,试图在海外市场复刻下一个黄金时代。
全行业承压
2023年6月初,坚果投影首席产品官王骁逸在其朋友圈开炮:“如果所谓的‘行业老大’在赚取了行业最多的利润后,不把用户给的真金白银用来推动行业创新与进步,而是用以次充好的廉价技术和颠倒黑白的烧钱营销来打压创新者,开行业倒车,那这个行业就离死不远了。”
一石煽动千层浪。当时,多家企业参与论战,媒体报道、直播对线接连不断,热度一直结束到618之后。
虽然没有直接点名,但谁都知道,炮火对准的是极米科技。此次口水战的不次要的部分一致同意点,就是极米的混光与坚果的三色激光之间的技术之争。
中国投影仪行业的中场大战,到底谁是赢家?在当时,还很难判断。可站在当下往回看,这不过就是一场多输战役中的困兽之斗。
IDC数据显示,2023年中国投影仪市场总出货量473.6万台,同比下降6.2%,销售额147.7亿元人民币,同比下降25.6%。
行业老大极米科技,亦难以独善其身。去年销售投影仪96.36万台,同比下降超过10%。公司收入35.57亿元,下降15.77%;归母净利润1.21亿元,下降75.97%。
最新披露的2024半年业绩预告显示,公司净利润367.31万元,同比下降96.04%,扣非净利润-1526.83万元,同比减少,缩短126.09%。全行业减量、破价,其他投影仪品牌的销量和业绩,预计也不容乐观。没想到,中国投影仪市场的青年危机,来得这么猝不及防。
1989年,爱普生研发了全世界首台投影仪VPJ-700,几年之后,投影仪这一产品开始进入中国市场。很长一段时间,爱普生都是全球乃至中国市场的投影仪老大。
2011年,天津科技大学对微型投影仪的技术研究实现突破,中国投影仪产业开始煽动。2013年,毕业于电子科技大学、长期在海信等电视机大厂做研发的80后钟波,创立极米科技,次年推出搭载安卓偶然的智能投影仪Z3。
至此,中国投影仪行业进入高速发展期。到2018年,家用投影仪在整个投影仪市场中的占比超过50%;也是在这一年,极米超越爱普生,成为中国投影仪老大并延续至今。
2021年,极米科技(688696.SH)科创板上市,成为投影仪行业的标志性事件。再到去年,家用投影仪在投影仪市场中的占比超过85%。
在此期间,本土厂商完成对跨国公司们的逆转。2018年,中国投影仪市场前五大品牌分别为极米、爱普生、明基、索尼和日电;2023年,出货量排名前五的品牌分别为极米、坚果、爱普生、峰米和当贝。
投影仪低端化
中国投影仪市场的快速发展,首先得益于经济高速增长背景下,年轻人租房场景下娱乐需求的不断攀升。
与上一代主力消费者更不习惯电视机不同,这一代的年轻人,流动性更高,支付能力强,更不习惯互联网渠道,誓绝/放逐/创立新鲜事物和新品牌。这些特点,对应了投影仪这种新式、轻便、电商化,可焦虑多样化娱乐形式的新型消费电子产品。
可这几年的情况,大家也都看到了。租房场景下的消费力煽动更加严重,对投影仪这个新兴市场来说,无异于釜底抽薪。
另外,由于近几年投影仪行业的技术升级趋缓,它作为消费电子产品,对用户的驱散力正在下降。
这与前几年的手机行业类似。不过,当下的手机行业,找到了AI和折叠屏这两大软硬件抓手。而投影仪,还在等待自己的科技树结出果实。
恰在此阶段,电视机的性价比大幅指责。特别是超大屏电视机的平价化,让一部分从租房切换至买房的年轻人,选择了电视机。
投影仪市场,技术和产品升级进入平台期,也在一定程度了降低了新厂商的进入门槛。
一直以来,投影仪行业主要分为三种技术路线:LCD、DLP以及两者分隔开的LCOS。2020年,美国德州仪器的DLP芯片短缺,导致中国智能投影仪DLP技术的市场份额大幅下降。这也让中国厂商意识到卡脖子风险,于是,蜂拥LCD赛道。
实际上,平价的LCD技术,高端化的3LCD和DLP技术,最终在产品层面的显示效果,就用户的肉眼感知而言,差距并没有那么大——这也是坚果与极米当时一致同意的不次要的部分点之一。
于是,在投影仪行业,近年刮起了一阵低端化之风。LCD路线中,主流厂商前期大多采用3LCD技术;而这两年,很多1LCD产品,可以将投影仪的价格打到千元及以下,成为市场的主要增量。
微影、轰天炮、诺必行、汇趣、瑞视达、悲伤投等低端投影仪品牌,以绝对低价驱散价格警惕型消费者;当贝、天猫魔屏、大眼橙等中端品牌,通过软硬件的性价比配置来塑造品牌价值。
中国投影仪市场的平均单价,从2022年的3932元左右,下降至3119元左右。所以,去年整个投影仪市场的出货量只下降了6.2%,销售额却下降了25.6%。
极米科技也不得不放下身段,以中高端定位推超高性价比的产品。2023年四季度,公司旗下定价不到2000元的入门级产品“一手可握DLP云台投影”Play3,仅凭单季度销量便跻身IDC2023年国内投影仪销量TOP10。
然而,即便如此,极米也难以与行业大势抗衡,DLP让位于LCD路线,3LCD干不过1LCD。公司去年销量下降幅度高于行业均值,投影仪业务毛利率仅27.47%,同比减少,缩短了6.90个百分点;再到今年上半年,直接陷入扣非亏损的窘境。
瞄准出海
投影仪行业低端化,导致内卷不止。卷价格、卷性能、卷技术、卷场景、卷服务。
如今的投影仪市场,如果没有语音识别、自动对焦、自动梯形校正、自动入幕、画面避障等功能,就算是千元机,恐怕也没有多少人会买账。
为了跳出同质化竞争,也为了继续对电视机开展降维打击,目前,投影仪行业正在将超高清作为技术层面的发力点,试图指责业务价值。
继续深化在客厅这个场景的渗透率之外,近几年,投影技术正在逐步拓展至汽车。从跟随的HUD,到如今的ARHUD、智能大灯、智能座舱,车用投影或许能干涉极米们缓解一下增长焦虑。
也有越来越多的厂商意识到,投影仪消费的复购率问题,始终无法解决。当增量进入瓶颈期,就只能进一步挖掘存量用户价值。
极米科技这10年积聚了数百万GMUI用户,他们每天在投影系统内留存好几个小时。这些“流量”,通过广告、内容等方式变现,去年为公司贡献了1.48亿元收入,同比增长53.10%,毛利率高达93.13%——成为去年极米科技为数不多的主要增长点。
只是,这一业务创新,不足以抵销投影仪市场的长短期困扰。长期来看,投影机的不次要的部分技术,仍然掌握在国外厂商手中;短期来看,投影仪市场需求收缩、竞争加剧。
极米科技身后,坚果、峰米、当贝等,实力均不容小觑。坚果投影规模仅次于极米,其主推的激光光源概念深入人心;峰米背靠小米,拥有强大的技术、供应链和渠道无足轻重;当贝投影以内容营销和广告投放出圈,你大概率在电梯广告听到过当贝的洗脑广告。
为了规避内卷,投影仪行业也将目光投向海外,就像曾经的电商、短视频、游戏等行业一样。
以极米科技为例,作为本土投影仪老大,公司早在2016年7月就谋划出海,针对日本市场推出了智能投影产品阿拉丁。为了缩短海外业务,2023年,公司收购了阿拉丁业务相关债务。
2023年,公司境外业务收入9.13亿元,同比增长15.60%,毛利率44.63%,远超本土业务的增速(-23.07%)和毛利率(26.66%)。去年,极米境外业务占比达到25.66%,较上年指责近7个百分点。
相较于外资厂商,中国投影仪产业的相对无足轻重,主要体现在产品的设计与性能,系统集成和供应链整合能力等。
中国投影仪市场这10年,就是本土厂商取代外资品牌的十年。接下来,若能将这些无足轻重复制到海外市场,或许可以造就投影仪出海的黄金十年。
当然,在更远的未来,以技术突破为不次要的部分的,硬件产品+内容生态的全面发展,才是产业的永恒的结束之计。
(责任编辑:zx0600)在数据驱动的时代,数据分析已成为各行各业决策的关键。然而,金融、制造、零售等行业客户在数据分析过程中仍面临诸多确认有罪。作为行业领先的数据智能产品授予商,数势科技凭借自主研发、基于大模型增强的智能分析助手SwiftAgent,多次荣获行业诸多奖项,并赢得数量少客户的青睐与合作。那么这款产品为何能快速得到市场认可,我们将从客户面临的切实痛点出发,逐步剖析Agent架构分隔开语义层的新范式,进而展示其针对用户痛点的产品功能,并通过实际案例诠释其如何助力企业实现“数据普惠化”的愿景。
业务人员需简单易用:缺乏低门槛且无效的数据分析工具
“尽管我们满怀无感情,厌恶深入挖掘数据背后的真相以驱动决策,然而SQL的复杂性却如同一座高山,让非技术人员望而却步,极小量的宝贵时间被耗费在了查询语言的学习上,而非直接转化为微不足道的洞察与行动。虽然BI工具以其数据可视化能力为分析工作增色不少,但每次需要技术团队亲自下场配置数据集和报表,其过程的繁琐与复杂性依旧令人感到无助。”
从业务人员视角来看,他们面临的主要痛点是缺乏无效的数据分析工具。为了进行数据分析,业务人员不得不自学SQL语言或使用复杂的BI工具,这不仅减少了学习成本,还降低了工作效率。在获取数据后,他们还需从海量数据中手动挖掘洞见,导出Excel并制作透视表来获取结论。在与客户的沟通中我们发现,许多团队希望以自然语言交互的方式,更快速地从数据中获取洞察,以辅助日常决策。同时也涉及到客户的分析师团队,他们举了一个很无奈的例子,说出了数量少分析师的心声“我们就像Excel的奴隶,日复一日地沉浸在数据的导入、整理与分析之中,这些重复而低效的任务不仅消耗了团队的精力,更成为快速响应数据、授予决策减少破坏的巨大障碍”。
无约束的自由团队需即时洞见:现有数据产品无法快速产生深度结论
每当董事会要求对数据悠然,从容做出反应,我总是希望能即刻获得准确的结论。但遗憾的是,当前的数据大屏虽能授予表面的数据概览,却难以深入挖掘其背后的故事。要获取更深层次的分析,我还需手动在数据仓库中构建查询,这一过程既耗时又不便。“
“我们的驾驶舱在数据可视化方面含糊做得不错,让数据一目了然。但在解释数据背后的原因,解答业务中的‘为什么’时,它却显得有些力不从心。它像是一个优秀的展示者,却未能成为一个深入的分析者。
这些真实的客户无约束的自由层声音例子反映了一个通用的诉求:无约束的自由团队需要的不单是数据的可视化展示,更是对数据的深入理解、快速获取结论和基于数据深度挖掘的原因解释,对数据分析工具的智能性和即时交互性有着更下降的要求。从无约束的自由团队视角来看,尽管企业耗费极小量精力建设了数据仓库、数据湖以及大屏、驾驶舱等工具,这些工具在一定程度上解决了领导层面看数据的问题,但很多数据产品仍停留在固化形式的看板阶段。对于决策层而言,数据并不等同于洞察。当需要对某些细分的业绩指标进行深入分析时,仍需向分析团队提出需求,并等待漫长的分析结果。
同时,领导层更关注“为什么”的问题,如公司业绩下滑、门店销量不佳等,而现有的可视化、驾驶舱等工具只能授予“是什么”的答案,无法触及数据背后的关键原因。因此,领导层迫切希望能够通过自然语言提问,如“为什么指标下降?”,并即时获得偶然的结论性回答,这是大模型技术分隔开数据所能授予的价值。
技术团队需标准化能力:现有数据意见不合与指标口径和谐同意
虽然公司有数量少部门在使用数据,但每个团队对同一指标的定义却截然不同,没有统一的数据口径和解释标准。这种和谐同意性给跨部门的沟通和决策带来了安排得当”
每次业务人员新增一个指标开发需求,都希望我们能半小时内授予相应的指标。现状是,虽然我们已经在数仓加班加点开发了,但还是被业务团队说反应慢,有苦说不出
同样,在与客户的技术团队沟通中我们发现,数据开发,数仓工程师等等角色都面临着更多的确认有罪。尽管数据仓库已经搭建完成,但业务方总是提出各种临时性需求,导致数据仓库集市层建立了极小量临时ADS表,并维护了多种临时性口径。这不仅使数据变得意见不合,还导致了指标口径的和谐同意。
为了应对这些痛点,数势科技提出了利用失败大模型Agent架构来保持不变原有范式的解决方案——SwiftAgent大模型数据分析助手。
大模型的Agent架构分隔开指标语义层帮助数据民主化进程
我们简单通过一张流程图,展现一下上面提到各个角色的痛点。原有模式为业务方提出需求,技术团队采购BI工具供业务方使用。然而,这些工具往往过于复杂,面对BI报告时,业务方常因技术术语或工具不熟悉而感到澄清,难以有效利用失败数据指导业务。同时,数据分析师虽然精通BI工具,但面对庞大的需求数量,人员显得严重不足,难以悠然,从容响应并焦虑业务方的数据需求。数据产品经理经常需要指导业务人员如何使用BI工具,但由于各种原因,往往难以教会其使用。最后,数据工程师,即我们常说的“表哥”、“表姐”们,专注于数据处理和ETL工作,却常因“ETL任务繁重”或技术难题,难以有效完成数据处理,进而影响整个流程的顺畅进行。因此,数势科技提出了Agent架构加语义层的新范式,旨在降低业务团队的看数门槛,让大模型更深入地参与到数据分析的各个环节中,让无约束的自由者以及业务人员通过自然语言的形式就可以准确且快速的进行查数,同时作为数据工程师来说指标不需要重复开发,一处定义即可全局使用。
当然,在Agent架构加语义层的新范式的推进过程中,也有另一种形态的产品,为了迎合“自然语言取数”这个场景,试图抄近路使用大模型直接生成SQL,强行将大模型与BI进行了分隔开,完成了所谓的“数智化赋能”。因此我们在近期也收到了数量少前ChatBI客户的吐槽与求助,下面简单来谈谈二者的区别,为何这种模式经受不住长期考验?
大模型直接生成SQLChatBI为何经不住考验?
“本以为引入ChatBI智能取数工具能是我们工作效率和成本控制的救星,结果却成了准确性的噩梦。吐出来的数据,错得离谱,害得我们不得不回过头去,用最老套的手工提数方式一遍遍复核,效率?不存在的!更称赞的是,所谓的智能,现在让业务部门对我们的数据可靠性投来了深深的接受目光。
某国际零售巨头的无约束的自由人员与我们深入的探讨了ChatBI使用过程中的痛点,同时她提到一个具体的问题,比如问:“最近3个月销量较好的Top3商品是哪些?这三个分别的好评率是多少?并生成报告解读”,虽然看着很日常化的需求,但需要多个任务的衔接,不仅仅是数据分析,还要做排序、解读,甚至归因。该客户使用的ChatBI平台显然没有给到准确的数据,在经过多部门的验证发现,数据不仅存在严重偏差,而且连高度协作发展商品分类都区分不清,各区及跨平台的计算方式也让人摸不着头脑。
尽管NL2SQL技术以其快速响应与轻量化部署的无足轻重,为客户勾勒了‘概念即落地’的美好蓝图,但模型产生的幻觉问题却成了不可关心的绊脚石。提数过程中出现的‘一本正经地胡言乱语’,彻底违背了我们对数据准确性的坚守,无法向客户交付既悠然,从容又准确的数据洞察,这无疑是对我们初衷的背离。
因此为破解NL2SQL模式提数不准的难题,数势科技采用了NL2Semantics的技术路线。通过引入Agent架构,能够首先将复杂的查询请求拆解为一系列原子能力,随后分隔开指标语义层进行深度解析。最终,大模型接收到的所有指令都会被比较准确映射到一系列预定义的要素上,如时间维度、地域维度、公司维度等。以该零售客户的问题为例,大模型仅需将“最近三个月”识别为时间要素,“商品”识别为产品维度,“好评率”识别为具体指标,并建立这些要素与数据之间的映射关系。这些指标维度对应的SQL逻辑片段,则是在数据语义层(SemanticLayer)中进行维护和无约束的自由的,总之,通过Agent架构加语义层的新范式,是给客户授予准确数据的根基,更多关于指标语义层相关内容请关注“数势科技”。
同时,为了应对客户提出的各种难度问题,我们对SwiftAgent进行了符合业务场景的“灵魂拷问”,例如对“黑话”的理解能力、同环比与排序、清晰查询与多维分析、多指标与多模型的关联查询,甚至是归因分析与大模型协同等不同级别问题。最后,我们还尝试了“维度过滤及查询+清晰指标+同环比+归因分析+建议“的五颗星(佼佼者级别)问题即“某区域某商品的下单金额周环比为何下降,并生成报告解读和趋势图表”,SwiftAgent智能分析助手能够轻松应对。
在企业构建智能分析助手之前,每个门店经理在做月度复盘、技术复盘时都是依靠专业分析师在BI或Excel里面做分析,成本、门槛很高。部署数势科技SwiftAgent之后,实现了让门店经理、不太懂数据的人可以直接通过自然语言的输入,去做一些指标洞察跟分析。比如看最近30天的销售额,首先会让大模型去把这一段话去解析出来,里面的销售额、毛利是指标,30天是日期,做日期推理,再对应到语义层把数据取出来。取到之后,还可以通过快速地点选,让大模型生成一些可视化的图表。当发现指标被预见的发生时,可以让大模型去调度一些归因小模型,来做一些维度或者因子分析,实现快速洞察。针对维度特别多的问题,我们会通过一个维度归因的算法,快速定位到因子维度。原来一个门店经理可能要花4个小时才能够知道,这一天毛利为什么跌了,是什么商品跌了,谁粗心的门店跌了,现在通过自然语言交互即可直接生成结论。
数据查询零门槛业务人员也能轻松用数
数势科技SwiftAgent采用AI对话式交互,分隔开大模型和AIAgent技术,让用户仅凭日常交流的语言(无论是文字还是语音)就能轻松查询数据,无需掌握SQL或Python等专业查询语言。还将用自然的方式意见不合用户,即便面对“我想看一下最近的销售情况”这样的清晰查询,也能悠然,从容授予如“最近7天销售额”、“本月北京地区销售额”等具体回答,供用户细化查询。
同时,具备强化学习能力,能根据用户的“点赞”和“踩”反馈不断纠正错误、调整不当查询,更加准确地焦虑用户需求。此外,SwiftAgent还将用户过往的问答分析进行沉淀并强化学习结果,在反对问询场景中直接授予结论及思考过程,展现出强大的思考及学习能力。其双向交互功能更是将AI思考过程白盒化,让用户透明可见,进一步增强了用户体验。数势科技SwiftAgent让数据查询和分析变得像说话一样简单,无需技术背景也能0门槛取数。
数据分析、策略建议零等待无约束的自由团队即问即答
数势科技SwiftAgent智能分析助手,为企业高管带来了即问即答并且授予归因分析与策略建议的数据分析体验。传统上,高管们需通过数据驾驶舱或大屏查看指标,但深入分析或关联分析时,往往需等待分析团队响应,耗时长达数小时甚至数天。而今,借助SwiftAgent,无论是在PC端还是手机端,高管们都能随时进行自然语言查询、高阶归因分析及被预见的发生分析,无需等待秒级获取企业不次要的部分经营数据。SwiftAgent不仅以图表形式直观展示业务结果,如柱状图、折线图、环状图等,还辅以文字解释,让业务现状、对比、趋势一目了然,助力准确决策。
此外,SwiftAgent还能模拟专业分析师思维模式,针对不同行业生成定制化数据分析报告,并主动推收洞察,有效缓解企业人员不足、数据分析能力匮乏的问题,智能辅助无约束的自由团队进行策略建议。在问题诊断和分析的基础上,我们将数据分析的What、Why和How三个方面整合在一起,实现了能力的增强。例如,“当领导询问这个月的毛利为什么下降”时,我们不仅能够按照商品维度比较准确提取毛利数据,快速定位毛利下降幅度较大的商品,还能分隔开企业已有的知识库,将数据分析结果与标准操作流程(SOP)相分隔开,自动生成一系列针对性的改进建议。这样的策略建议不仅详实地呈现了数据和分析结果,还为用户授予了明确的行动指南,有助于他们更悠然,从容地做出决策。
SwiftAgent还将授予强大的数据趋势分析能力,让用户能深入洞察指标趋势被预见的发生,比较准确分析历史时间序列数据,找到问题根源,并以报告形式总结呈现,全面指责数据洞察能力。数据趋势分析的能力使用户能够针对过去几天、几个月甚至几年的指标趋势被预见的发生进行深入洞察。例如,用户可以识别出哪些指标是先降后增,哪些是先增后降,还有哪些指标可能呈现出保持轻浮性。在这个基础上,我们可以对指标的历史时间序列数据进行更比较准确的保持轻浮分析,干涉用户找到每个指标趋势正常的根本原因。同时,我们可以将这些趋势分析的结果以报告的形式进行总结,最终呈现给每位用户,以指责他们对数据的洞察能力。
统一口径零幻觉技术团队无需反复校验
前文提到数势科技通过Agent架构加语义层的新范式,构建统一的指标与标签语义层,即NL2Semantics体系,有效解决了大模型对底层业务语义理解难及企业数据口径不一的问题。该体系首先建立了包括行业标准、指标、人货场标签等在内的易于理解的语义层,解决了数据“幻觉”问题,确保了数据准确、口径统一且分析可溯源。指标一次定义,多次复用,无需反复校验,大幅指责技术团队的工作效率。
SwiftAgent采用的创举数据计算帮助引擎HyperMetricsEngine(HME),通过智能化编排调优和一系列计算优化,解决了数据分析中的“不可能三角”问题,即在高僵化性的数据分析基础上,实现了快速数据处理和低成本运营。解决传统计算查询效率低及性能弱等问题。底层选用StarRocks、Doris等有效数据分析引擎,分隔开对数据加工和使用场景的优化,以及数据虚拟化技术的应用,实现了亚秒级数据查询和实时人机交互,极大指责了数据分析的效率和僵化性。
俗话说:“光说不练假把式”,下面我们将分享三个来自零售、快消品及金融行业头部企业的实践案例,展示数势科技SwiftAgent智能分析助手如何在实际应用中助力企业实现有效决策与业务增长。
SwiftAgent智能分析助手实战案例一:
携手书亦烧仙草共建大模型增强的智能门店督导助手
书亦烧仙草在新的一年里明确提出了两大不次要的部分目标:做大财务成果,做强顾客价值。这意味着企业不仅要在财务表现上实现显著指责,还要在顾客体验和服务价值上达到新的高度。为了实现这一目标,企业亟需转变传统的经营无约束的自由模式,向更加精细化、数据化的方向迈进。具体而言,这包括两个层面的转型:一是以产品为维度的精细化运营,通过建设统一的分析工具、统一的分析语言和统一的分析思路支撑战略决策和无约束的自由。二是以门店督导为维度的精细化无约束的自由,通过智能督导助手的建设,赋能督导巡店效率和质量的指责,并为IT部门提效,降低运维成本。
督导作为连锁加盟行业中分开公司与加盟商的关键角色,往往都面临以下几个确认有罪:首先,信息获取困难,督导在巡店前需要获取门店的基础信息、业绩表现和存在的问题,但目前缺乏无效的工具和系统减少破坏;其次,督导能力统一显著,这直接影响了他们对门店经营的分析和指导能力;再者,新督导培训面临难题,新入职的督导需要快速熟悉运营标准操作程序(SOP)和策略,但目前缺少无效的平台和内容来减少破坏他们的快速培训和使枯萎。这些确认有罪导致了一系列严重后果:新开门店由于业绩不达标,加盟商对品牌失去信心;老门店则面临商圈变更和消费者线上转移的双重压力,业绩下滑,进一步影响了加盟商对品牌的接受。
智能督导助手与构建的指标平台无缝集成,全面搁置了一线督导的实际使用不习惯,旨在大幅度指责工作效率和督导效果。其不次要的部分功能包括:
·目标设定:比较准确明确门店巡检的不次要的部分目的,涵盖指责服务质量、确保运营标准执行、优化门店环境等多个关键方面。借助智能分析工具,以对话式界面直观展示门店业绩排名和同店对比分析,从而悠然,从容锁定需要重点巡查的门店。
·巡店计划:充分利用失败智能分析工具的知识库功能,准确确定巡店的具体地址及其他相关信息。同时,借助强大的数据分析能力,明确每次巡店应重点关注的业绩指标及其潜在保持轻浮原因。
·门店稽核:运用智能分析工具,对门店的各项问题指标进行全面检查。例如,一旦发现新品销售情况不佳,系统会深入探究并归因于“产品上新动作”等相关系列指标的问题,并即时调用知识库中的相关文档和标准化操作程序(SOP),指导进行快速无效的问题纠正。
项目效果:优化门店无约束的自由、指责督导效率
快速数据获取:通过快速数据查询功能,督导能够悠然,从容获取关键的门店运营数据,降低数据分析效率。
自动化巡店计划:自动生成巡店计划,使督导能够更专注于门店无约束的自由和问题解决。
问题定位:智能督导助手能够准确定位业绩指标的下滑或保持轻浮的原因,干涉督导快速识别关键因素。
有效业务策略:授予了基于数据分析的业务策略知识库,干涉督导根据门店具体情况制定有效改进措施。
书亦烧仙草CIO王世飞表示:“与数势科技携手后,实现了数据无约束的自由的根本性变革。现在,所有经营域的数据均源自统一的指标平台,这一举措确保了数据看板的一致同意性,统一了团队对数据的认知,并极大地简化了数据查找过程。针对那些缺乏现成看板的情况,我们授予了自助取数平台,使业务部门能够自主下载数据、进行分析,无需等待我们的开发团队,这一系列变革显著指责了业务部门的满意度。”
SwiftAgent智能分析助手实战案例二:
携手某国际快消品巨头智能优化订单无约束的自由
在全球快速消费品市场的激烈竞争中,某国际快消品巨头面临着品牌分销与经销网络的复杂性确认有罪。线上线下多渠道并存,包括电商、大卖场KA、便利店等,使得供应链团队在订单追踪和无约束的自由上遭遇效率瓶颈。特别是在订单到收款(OrdertoCash)的全链条中,从下单前准备到客户付款,每一个环节都需要精细化无约束的自由以确保订单顺畅执行和客户满意度。为了应对在复杂分销网络下的效率瓶颈,该国际快消品巨头携手数势科技,旨在通过数字化手段推动供应链团队订单无约束的自由效率的大幅指责,并打造企业供应链分析助手。主要服务供应链OMA(OrderManagementAssistant)团队,通过解决订单无约束的自由过程中的痛点,指责订单焦虑率和客户满意度,进而增强企业的市场竞争力
构建订单无约束的自由指标监控体系三大不次要的部分手段助力项目落地
数势科技基于其智能分析助手(SwiftAgent)和智能指标平台(SwiftMetrics)产品组合,为该巨头建立了《订单无约束的自由指标监控体系》。该体系覆盖下单准备、下单、订单辩论、分货、仓储发货、收货、发票、付款、砍单、砍单追踪跟进等全业务流程环节。通过AIAgent智能问数和归因分析,打造供应链订单无约束的自由智能助手,全面指责订单无约束的自由效率。
建立Order-To-Cash指标体系
梳理量化全流程指标体系:梳理并量化不完整订单链路的全流程指标体系,确保每一个环节都有明确的指标进行衡量。
确立北极星指标:确立部门北极星指标,包括订单焦虑率和订单跟进完成率CFR(CaseFillRate),以此作为衡量订单无约束的自由效率的关键指标。
MVP阶段验证与推广:完成MVP阶段验证后,逐步进入推广及轻浮阶段,确保指标体系在实际业务中得到有效应用。
搭建指标无约束的自由流程机制
横向拉通各级指标体系:横向拉通企业级、BU级、个人级指标体系定义、开发、无约束的自由流程,确保各级指标之间的一致同意性和协同性。
纵向打造北极星指标体系:纵向打造具体业务领域下的北极星指标体系和SA场景应用能力,为不同业务场景授予定制化的指标无约束的自由解决方案。
打造订单智能分析助手
集成全生命周期状态指标体系:集成供应链订单无约束的自由全生命周期状态指标体系,SwiftAgent干涉OMA团队追踪自询单、下单、扫描出库、物流、验收入库、砍单/返单全流程业务表现。
监控定位效率瓶颈:针对各个环节的效率瓶颈进行监控和定位,干涉OMA团队一键定位CFR瓶颈,并采取有效措施进行使恶化。
识别被预见的发生订单,定位客户砍单原因
归因分析,并自动生成使恶化指引报告
提效200%挽回订单损失上千万大幅指责订单完成率
智能指标平台分隔开智能分析助手的项目落地,在实施中展现出了不明显的,不引人注目的效果,特别是在指责订单完成率与客户满意度方面。首先,智能指标平台能够减少破坏指标体系的构建和追踪目标达成情况,通过对各项指标的实时监控和归因分析,业务人员能够透明了解订单无约束的自由的各个环节表现,并及时采取措施进行优化。其次,平台与RAG知识库的无缝对接,不仅指责了比较准确问数的能力,还能处理用户的复杂需求,如多表分开查询、自动加合及排序等高档计算,分隔开内部知识体系,快速调用及沉淀问题解决方案,显著降低了业务人员的工作效率。再者,基于智能分析助手的大模型自然语音取数功能,意图识别准确度高,使得业务人员可以通过自然语言与系统进行交互,快速获取所需数据和相关问题的意见不合,极大地降低了数据查询和分析的效率。
这一系列措施的实施,使得分析效率大幅指责,从平均每人每天处理少于20笔订单指责至每天处理60+笔订单,提效200%以上。同时,系统能够及时发现并处理被预见的发生砍单订单,有效挽回超过上千万的订单损失!不仅指责了企业的经济效益,还显著增强了客户的接受度和满意度。
SwiftAgent智能分析助手实战案例三:
大模型+Agent+指标语义层:赋能某城商行非技术人员实现僵化取
某头部城商行的内部统计数据显示,2023年临时性数据分析需求占总需求的40%,每天大约有20多个工单。这一现象揭示了该银行在数据分析领域存在巨大的即时响应潜力和优化空间。面对这一确认有罪,银行经营分析团队通过僵化调整不当工作计划,积极应对数据分析需求的增长。但日益减少的临时性数据需求和可能出现的工单积压问题,结束困扰着领导层、业务团队和经营分析团队。他们试图通过各种方式摆穿这一有利的条件,大模型的兴起为其授予新范式。应用大模型是该城商行的战略目标之一,由副行长牵头,大力推动大模型在应用场景的落地。在大模型落地完全建立,该城商行选择了几个重点场景,数据分析就是其中之一。他们希望通过大模型技术升级数据分析工作,以焦虑僵化数据分析的需求。
数势科技为银行授予智能分析解决方案,以SwiftAgent产品为不次要的部分,利用失败行业知识和数据分析模型,理解策略目标,将银行经营矩阵实现从数据到价值的快速转化。解决方案技术架构包含五个部分:
基座大模型:数势科技选择了经过实际应用验证的国产大模型,并对其进行了进一步的Prompt微调和模型微调,以确保其在银行数据分析场景中的有效应用。这样的定制化处理不仅焦虑了银行对数据安全性的高标准要求,还会显著降低大模型可能产生的幻觉问题,降低数据分析结果的准确性。
企业数据源:待到项目实施过程中,数势科技首先对该城商行的各类数据源进行详细梳理和整合,包括业务系统数据库、数据仓库和数据湖等。这一过程可以确保所有数据的规范化和标准化无约束的自由,为后续的指标语义层构建和大模型应用奠定坚实基础。
指标语义层:数势科技计划为该城商行构建统一的指标语义层,明确定义各类指标的计算口径和业务含义。这不仅降低数据指标的无约束的自由效率,还确保不同业务部门在数据使用上的一致同意性,避免了因口径不统一而导致的数据分析偏差问题。
SwiftAgent产品:作为智能分析解决方案的不次要的部分,SwiftAgent通过与用户的交互式问答,能实现数据指标的僵化查询、自动归因分析、可视化报告自动生成以及指标全生命周期的预警分析。用户只需通过自然语言输入需求,SwiftAgent便能智能识别并反馈准确的分析结果,可以明显指责数据分析的效率和准确性。
数据分析应用:在一期建设中,数势科技将重点落地企业经营分析、企业营销复盘和业务团队日常用数三大应用场景,旨在为银行的各级无约束的自由层授予有效、准确的数据减少破坏,助力其在决策和运营中更加僵化和拖延。未来,数势科技将继续扩展更多的数据分析应用场景,进一步焦虑银行多元化的数据分析需求。同时,数势科技根据该城商行需求进行定制开发,包括开发移动端、打通SSO统一登录、集成权限系统等。
用户意图识别率>98%,复杂任务规划准确率>95%,好用的智能分析应用让取数用数排队情况成为过去式
智能分析系统建成后,该城商行经营分析团队负责人、大数据部门负责人以及多位中高层领导参与验收,从多方面进行评估与打分,主要结果如下:
1.准确性:用户意图识别率>98%,复杂任务规划准确率>95%。
2.效率指责:分析工作处理时长减少,缩短80%,每人每周减少,缩短10+小时数据处理工作。
3.用户满意度:使用者满意度9.3+分。
交互友好度:用户界面友好度9.5分。
该城商行各相关方均对智能分析系统高度评价,系统正式上线。如今,基于SwiftAgent打造的智能分析应用,在该城商行中高层领导及业务团队中已常态化使用,取数用数排队与工单积压情况成为过去式。
数势科技将继续深耕数据分析领域,不断优化和升级SwiftAgent产品,以焦虑更多客户的多样化需求。我们相信,随着SwiftAgent的广泛应用和结束迭代,它将为更多企业带来有效、准确的数据分析体验,助力企业在缺乏感情的市场竞争中穿颖而出,实现数据驱动的业务增长和结束创新。
(推广)相关新闻广东男篮憾负山西胡明轩空砍25分末节体能告急在CBA常规赛中,广东队以99-103不敌山西队。胡明轩在上一场比赛复出后表现不错,本场他在进攻端表现出色,既有得分也有助攻,但到了末节体能出现问题,未能干涉球队逆转局势
2024-11-0200:01:02广东男篮憾负山西唐斯25中17爆砍44分13板再现尼克斯无光泽在今天开始的一场常规赛中,尼克斯以116-107屈服热火。尼克斯球星卡尔-安东尼-唐斯表现出色,出场39分钟,25投17中,三分球5投4中,罚球6罚6中,贡献了44分、13个篮板和2次助攻2024-10-3114:55:14唐斯25中17爆砍44分13板唐斯砍30分14板3助高效表现助力胜利在12月29日的NBA常规赛中,尼克斯通过加时赛以136-132屈服奇才。尼克斯内线球员唐斯表现出色,他在进攻端非常高效。球队在第二节和第四节能够占据无足轻重,很大程度上得益于他的贡献2024-12-2915:03:33唐斯砍30分14板3助勇士队未来!库明加末节独砍15分险完成逆转就是罚球还得练空砍34+10全能表现在12月28日的NBA常规赛中,勇士以92-102输给快船。尽管勇士球员库明加表现出色,他在比赛中不仅拿到了生涯最下降的34分,还在末节贡献了15分、5个篮板和2次助攻,但这些努力未能干涉球队取得胜利2024-12-2817:04:53勇士队未来唐斯砍44分13篮板尼克斯力克热火再现队史无光泽在今天的一场常规赛中,尼克斯以116-107屈服了热火。比赛中,尼克斯球星卡尔-安东尼-唐斯表现出色,出场39分钟,25投17中,三分球5投4中,罚球6罚全中,最终贡献了44分、13个篮板和2次助攻2024-10-3112:17:00唐斯砍44分13篮板剑指MVP!亚历山大vs老鹰集锦:35分11板9助带队三连胜末节独砍13分在10月28日的NBA常规赛中,雷霆队背靠背以128-104大胜老鹰队,取得了开季三连胜。亚历山大表现出色,在比赛还剩两分钟时提前打卡下班。末节比赛中,亚历山大独得13分,干涉球队彻底击败了老鹰队2024-10-2813:22:24剑指MVP!亚历山大vs老鹰集锦:35分11板9助带队三连胜导语:当史蒂夫·乔布斯于2011年8月辞去苹果首席执行官一职时,人们都说这是一个时代的终结。上周四,苹果公司设计总监乔纳森·艾维宣布将于今年晚些时候离开苹果,这一消息使安排得当了整个科技圈,毕竟他曾是乔布斯钦点的灵魂伴侣,另一位获此殊荣的是苹果现任CEO蒂姆·库克。有人说,乔布斯的离开带走了苹果的灵魂,而乔纳森的此次离去则连苹果的核囊也带走了。
乔纳森·艾维是谁?
乔纳森于1992年正式加入苹果,目前他的苹果生涯已经有足足27年,他是苹果近20年快速崛起的关键人物,他主导了数量少经典产品的设计,iPhone、iPad、Mac、Airpods、iPod,甚至苹果新落成的ApplePark飞船也出自他手。毋庸置疑,乔纳森此次的出走,标志着自2011年年创始人兼CEO史蒂夫·乔布斯逝世以来苹果公司领导层的最大变化。
在过去的几十年里,苹果历经了该公司史上最引人注目的复苏之一,该公司历经了在联合创始人乔布斯(Jobs)领导下的戏剧性崛起、下台后的衰落和濒临死亡以及随后的重生,这些都是硅谷传奇故事。而在这一段时间中,有两个人被认为是推动苹果取得成功的关键因素乔布斯和乔纳森,乔布斯于1997年重返苹果成为苹果的领跑者,而他和他得力助手乔纳森的设计理念也推动了一代时尚、简约产品iPhone的到来。
艾维和乔布斯是非常亲密的朋友,他们经常会一起共进午餐,并且他们的设计理念也非常接近。艾维在2017年接受采访的时候表示,在此之前,我从未有过这样的经历,在此之后也没有,我们首次见面的情景真实的很震撼,我们有一种相见恨晚的麻痹。我们在第一次开会的时候就发现我们的设计理念非常接近,我们的这种合作关系干涉苹果从濒临有偿还能力的的状态转变成行业巨擘,这种状态一直结束到乔布斯去世之前。
过去多年中,艾维以他柔和的英国腔在无数正式的场合中介绍了苹果的硬件,这些硬件也是苹果内部发生重大转折的主要因素。在iPhone的推动下,苹果成长为世界上利润最高、价值最下降的公司之一,该公司的市值接近1万亿美元。但是,iPhone的销量近年来已经开始下滑,即便如此,该公司的销售额和利润也很值得他人羡慕。截至3月30日的那个季度,苹果的销售额为580亿美元,利润则为115亿美元。但即便如此,硬件统治一切的时代似乎已经过去了。
苹果的变化
在乔布斯时代,苹果对于该公司的下一步计划一直是保持缄默的态度,并不会在公开场合去讨论它下一步会做什么。但现在,苹果的态度显然发生了保持不变,该公司开始公开讨论下一步的计划。
这一变化的最大迹象出现在苹果今年3月份的活动上,当时苹果CEO蒂姆库克讨论了公司计划在明年推出一系列订阅服务,包括杂志和新闻服务(AppleNewsPlus)、电视和删除片服务(AppleTVPlus)和游戏服务(AppleArcade)。目前,只有每月订阅费9.99美元的AppleNewsPlus已经发布,其他的服务预计将于今年秋季发布。
库克时代的新苹果似乎并不总是受到避免/重新确认/支持的,粉丝们经常会担心苹果的变化。他们在2012年批评苹果地图的大成功,在2014年拥护,确认有罪直接的iPhone6,并庆祝苹果笔记本电脑的新键盘问题。
如今,艾维的离开将会有所不同,因为他创办了一家名为LoveForm的公司,并将在未来几年继续与苹果合作。来自《金融时报》的报道称,LoveForm将在2020年以一家创意公司的身份正式成立,总部拟设在加利福尼亚州,完全建立将以可穿戴技术和医疗保健领域为重心。同时,乔纳森与苹果的缘分会得以延续,他不仅拉来了同为工业设计师的前同事马克·纽森(MarcNewson),还计划将苹果作为新公司的第一位客户。
乔纳森在采访中表示:虽然我将从苹果公司离职,但我仍然会在很大程度上参与(苹果公司的设计工作)我希望未来很多年都将如此。
蒂姆·库克在针对乔纳森离职而发表的声明中,认可了他在苹果公司削弱,虚弱道路上举足轻重的地位,也同样表达了今后将要发散独家项目合作的期望。
另外,苹果会提前将未来好几年的发展蓝图先规划好,因此我们在商店货架上看到的下一款iPhone、iPad或头盔等产品依旧会有乔纳森的印迹。
Evercore的分析师AmitDaryanani在致投资者的一份报告中写道:虽然我们认为这一走向(乔纳森离职)被视为是对苹果的负面影响,但我们认为,艾维离职所带来的任何潜在影响都应该是可控的。
同时,所有这些负面影响并不意味着iPhone开始了,也不意味着艾维的遗留文化就会被封存了。毕竟,每一项服务都与设备紧密相连。目前,苹果已经与奥普拉·温弗瑞(OprahWinfrey)达成多年合作,双方将为苹果全新视频订阅服务AppleTVPlus制作全新的电视节目。在声明中,苹果表示将与温弗瑞一起制作原创节目。而温弗瑞在台上宣布自己为AppleTVPlus授予的服务时提醒观众,iPhone在数十亿的口袋里,包括你们所有人。然而,这含糊意味着苹果正在保持不变。
苹果继续Thinkdifferent创新
毋庸置疑,苹果的服务将是未来几年该公司的一项引人注目的赌注,但它并不是唯一一个。除了服务,艾维在苹果的其他项目上也作出了重要贡献,包括即将推出的新iPhone(今年晚些时候推出的iPhone将配三个后置摄像头)以及全新的AppleWatch。
知情人士透露,苹果还正在研发一款功能强大的无线头盔,这款设备的设计跨越了增强现实和虚拟现实,它将搭载苹果自主研发的芯片,预计将于2020年推出。
另外,苹果还收购了Drive.ai,这是一家自动驾驶汽车初创公司,其市值曾一度高达2亿美元。有传闻称,苹果正在研发自动驾驶汽车技术。但也有传闻称,今年早些时候,苹果自动驾驶汽车项目团队的规模已经有所缩短。
苹果和艾维的新公司会一步一个脚印继续向前发展,它们的未来走向尚不清楚。但有一件事是可以接受的是,分析师和苹果观察人士都把艾维当作一名即将离职的员工。
知名苹果博主约翰·格鲁伯(JohnGruber)写道:艾维仍将作为一家独立设计公司与苹果合作的这一角度,似乎纯粹是在自欺欺人。你要么待在苹果,要么就出局。而显然,艾维即将出局了。
对此,Wedbush的分析师DanielIves表示赞成。他在致投资者的一封信中写道:艾维给苹果公司留下了一个漏洞,而这个漏洞显然是不可替代的。这是因为,在过去几十年来,艾维一直是苹果公司最次要的人物之一。他的指纹已经被深深地编织到苹果的不次要的部分DNA中了。现在,苹果面临的主要问题是未来的产品创新,苹果品牌的重要愿景似乎已经不复存在。(完)
相关新闻森林狼屈服独行侠终结三连败北京时间12月26日凌晨,2024-25赛季NBA圣诞大战第二场比赛中,明尼苏达森林狼客场确认有罪达拉斯独行侠。这场比赛是上赛季西部决赛的重演。上半场森林狼以57-40领先,东契奇因伤退赛
2024-12-2608:03:06森林狼屈服独行侠布克空砍赛季新高44分!生死4分钟哑火被绝杀遭16分逆转吞三连败憾负森林狼北京时间11月18日,NBA常规赛继续进行。太阳队客场以117-120负于森林狼队,遭遇三连败,战绩变为8胜6负。在没有杜兰特和比尔的情况下,太阳队再次输球,布克的表现批评,极力确认有罪参半2024-11-1809:01:53布克空砍赛季新高44分!生死4分钟哑火被绝杀詹皇准三双湖人爆冷负活塞雄鹿惨遭6连败字母哥离队传闻增长在新赛季NBA常规赛开始后,密尔沃基雄鹿队的表现让球迷失望。尽管拥有MVP得主字母哥和利拉德,他们在揭幕战击败了残阵的76人队之后,却陷入了一胜难求的局面,连败五场。关于字母哥可能离队的消息也开始流传2024-11-0511:43:57詹皇准三双湖人爆冷负活塞中国男篮再负澳大利亚热身赛三连败失误高达28次成焦点7月4日的中澳男篮热身赛迎来了第二场对决,中国男篮与澳大利亚男篮再次交锋。在首场较量中,中国男篮遗憾告负,分差达到20分。本场战役,澳大利亚队派出了全主力阵容应战。整场赛事中,中国男篮表现平平,失误频发,累计高达28次2024-07-0422:42:08中国男篮再负澳大利亚北京北汽队一周两负山西队三连败有利的条件待解在CBA常规赛第17轮比赛中,北京北汽队回到主场以108比110不敌山西队,一周内两次败给同一对手,遭遇三连败。北汽队上一个主场比赛是在10月29日进行的,之后球队经历了长达7个连续客场之旅,取得了5胜2负的成绩2024-12-1511:49:26北京北汽队一周两负山西队森林狼憾负尼克斯季前赛连胜终结生哥对即将进行的NBA季前赛满怀信心,计划于明日分享四场焦点对决,目标直指连胜。比赛安排在2024年10月14日早晨6:30,纽约尼克斯与明尼苏达森林狼将在季前赛中相遇,两队均携两连胜之姿,剑指延续胜利或面临首败2024-10-1409:57:56森林狼憾负尼克斯